Algebra of M-Solid Quasivarieties
ISBN:978-618-81118-0-6
Ημερομηνία έκδοσης:2014/5
Σελίδες:204
Είδος:Βιβλίο
Διαστάσεις:24χ17
Εξαντλημένο
45.60€ από 48.00€
Περιγραφή:
Quasivarieties are classes of algebras of the same type, which are defined by sets of implications. Equivalently, a class of algebras of the same type is a quasivariety if it is isomorphically and multiplicatively closed, closed under ultraproducts, hereditary and contains a trivial algebra. Quasivarieties became much more important when it turned out that they are the appropriate classes of algebras to algebraize logical calculi. The study of all subquasivarieties of a given variety is a challenging problem. Unfortunately, little is known about the lattice of all subquasivarieties of a given quasivariety. The theory of hyperidentities (hyperquasi-identities) and hypersubstitutions, to which the author of this monograph contributed a lot in the past twenty years, is offering such methods. For each submonoid M of the monoid of all hypersubstitutions of a given type, M-solid varieties and M-solid quasivarieties were invented in order to consider a complete sublattice of the lattice of all subvarieties and subquasivarieties, respectively. The concept of an M-derived algebra and an M-derived quasivariety is a useful tool. Some of the concepts were invented by the author and collaborators. The Birkhoff-type characterization of M-hypervarieties and M-hyperquasivarieties is presented. Some newer ideas concern the description of the derivation concepts of M-hyperequational and M-hyperquasi-equational logic. The solution of the M-hyperbasis and M-hyperquasi-basis is given. Results of an M-dimension of a variety are also presented.
Λογισμός συναρτήσεων μιας μεταβλητής και εισαγωγή στη γ...
Άλγεβρα και στοιχεία από τη μαθηματική ανάλυση
Εισαγωγή στη γραμμική άλγεβρα
Μαθηματικά παράδοξα και μαθηματικά παιχνίδια
Μια υπολογιστική εισαγωγή στη θεωρία αριθμών και την άλ...
Οδηγός για το Mathematica
Εξισώσεις και ανισώσεις δευτέρου βαθμού στα "Αριθμητικά...
Εισαγωγή στη γραμμική άλγεβρα
Απειροστικός λογισμός και πραγματική άλγεβρα
Εφαρμοσμένη γραμμική άλγεβρα
Εφαρμοσμένη γραμμική άλγεβρα